
Introduction to 8086 Assembly Language Programming 1

Introduction to 8086 Programming

Learning any imperative programming language involves mastering a
number of common concepts:

Variables: declaration/definition

Assignment: assigning values to variables

Input/Output: Displaying messages

Displaying variable values

Control flow: if-then
Loops

Subprograms: Definition and Usage

Programming in assembly language involves mastering the same
concepts and a few other issues.

Variables
For the moment we will skip details of variable declaration and
simply use the 8086 registers as the variables in our programs.
Registers have predefined names and do not need to be declared.

We have seen that the 8086 has 14 registers. Initially, we will use
four of them – the so called the general purpose registers:

ax, bx, cx, dx

These four 16-bit registers can also be treated as eight 8-bit registers:
ah, al, bh, bl, ch, cl, dh, dl

Introduction to 8086 Assembly Language Programming 2

Assignment

In Java, assignment takes the form:

x = 42 ;
y = 24;
z = x + y;

In assembly language we carry out the same operaion but we use an
instruction to denote the assignment operator (“=” in Java).

mov x, 42
mov y, 24
add z, x
add z, y

The mov instruction carries out assignment in 8086 assembly
language.

It which allows us place a number in a register or in a memory
location (a variable) i.e. it assigns a value to a register or variable.

Example: Store the ASCII code for the letter A in register bx.

A has ASCII code 65D (01000001B, 41H)

The following mov instruction carries out the task:

mov bx, 65d

Introduction to 8086 Assembly Language Programming 3

We could also write it as:

mov bx, 41h
or mov bx, 01000001b
or mov bx, ‘A’

All of the above are equivalent. They each carry out exactly the same
task, namely the binary number representing the ASCII code of A is
copied into the bx register.

The value is copied into the right-hand side (low-order byte) of the
register. The left-hand side will contain all 0’s.

Thus we could also have written it as:

mov bl, 65d
mov bl, ‘A’

Since register bl represents the low-order byte of register bx.

Note: The 8086 Assembler converts a character constant i.e. a
character in single quotes (e.g. ‘A’) to its ASCII code automatically.
This is a very useful feature and it means that you can specify many
characters without having to look up their ASCII code. You simply
enclose the character in single quotes. You will have to use the

bit
 0

bit
15

mov bx, 65D0000 0000 0100 0001bx
65D

The effect of executing mov cx, 65D is to overwrite the bx register with 65D as a 16-bit number

Introduction to 8086 Assembly Language Programming 4

ASCII code for control characters such as carriage return and line
feed.

Notation

mov is one of the many 8086 instructions that we will be using. Most
assembly language books use uppercase letters to refer to an
instruction e.g. MOV.

However, the assembler will also recognise the instruction if it is
written in lowercase or in mixed case e.g. Mov. (In fact, the
assembler converts all instructions to uppercase).

It is m y personal preference to use lower case when writing
programs. You may write your programs using which ever notation
you find convenient, but you should be consistent and stick to one
particular style.

More about mov

The mov instruction also allows you to copy the contents of one
register into another register.

Example:

mov bx, 2
mov cx, bx

The first instruction loads the value 2 into bx where it is stored as a
binary number. [a number such as 2 is called an integer constant]

Introduction to 8086 Assembly Language Programming 5

The Mov instruction takes two operands, representing t he
destination where data is to be placed and the source of that data.

General Form of Mov Instruction

mov destination, source

where destination must be either a register or memory location and
source may be a constant, another register or a memory location.

In 8086 assembly language, the source and destination cannot both
be memory locations in the same instruction.

Note: The comma is essential. It is used to separate the two operands.

A missing comma is a common syntax error.

We will look at manipulating data in memory at a later stage.

More Examples

The following instructions result in registers ax, bx, and cx all having
the value 4:

mov bx, 4 ; copy number 4 into register bx
mov ax, bx ; copy contents of bx into register ax
mov cx, ax ; copy contents of ax into register cx

Introduction to 8086 Assembly Language Programming 6

Comments

Anything that follows semi-colon (;) is ignored by the assembler. It is
called a comment. Comments are used to make your programs
readable. You use them to explain what you are doing in English.

It is recommended that you use comments frequently in your
programs, not only so that others can understand them, but also for
yourself, when you look back at programs you have previously
written.

Every programming language has a facility for defining comments.

More 8086 Instructions

add, inc, dec and sub instructions

The 8086 provides a variety of arithmetic instructions. For the
moment, we only consider a few of them. To carry out arithmetic
such as addition or substraction, you use the appropriate instruction.

In assembly language you can only carry out a single arithmetic
operation at a time. This means that if you wish to evaluate an
expression such as :

z = x + y + w – v

You will have to use 3 assembly language instructions – one for each
arithmetic operation.

Introduction to 8086 Assembly Language Programming 7

These instruction combine assignment with the arithmetic operation.

Example:

mov ax, 5 ; load 5 into ax

add ax, 3 ; add 3 to the contents of ax,
; ax now contains 8

inc ax ; add 1 to ax
; ax now contains 9

dec ax ; subtract 1 from ax
; ax now contains 8

sub ax, 6 ; subtract 4 from ax
; ax now contains 2

The add instruction adds the source operand to the destination
operand, leaving the result in the destination operand.

The destination operand is always the first operand in 8086 assembly
language.

(In M68000 assembly language, it is the other way round i.e. the
source operand is always the first operand e.g. move #10, x)

The inc instruction takes one operand and adds 1 to it. It is provided
because of the frequency of adding 1 to an operand in programming.

Introduction to 8086 Assembly Language Programming 8

The dec instruction like inc takes one operand and subtracts 1 from
it. This is also a frequent operation in programming.

The sub instruction subtracts the source operand from the destination
operand leaving the result in the destination operand.

Some microprocessors do not provide instructions for multiplication
or division (e.g. the M6800). With such microprocessors,
multiplication and division have to be programmed using repeated
additions and subtractions and shift operations (which will be
discussed later).

The 8086 provides mul and div (and others) for multiplication and
division.

Ambiguity

Suppose you wish to load the hexadecimal value A (decimal 10)
written as ah in the register bl.

You might be tempted to write:

mov bl, ah

But we have already seen that there is a register called ah (the high-
order byte of ax) and so the above does not do what we intend.
Instead it copies the contents of register ah into bl. In order to avoid
ambiguity when writing hexadecimal numbers that begin with a letter
we prefix them with 0. Thus we write:
mov bl, 0ah ; copy hex number ah into bx

Introduction to 8086 Assembly Language Programming 9

It is common practice to write decimal numbers with the letter D
appended so as to distinguish them from hexadecimal.

The 8086 assembler take all numbers to be decimal numbers unless
there is a B (binary), H (hex) or O (octal) appended to them.

Note:

When data is moved to a register, all 16 bits (or 8 bits) are given a
value. The assembler will automatically fill in 0’s on the left-hand
side.

Example:
mov bx, 42h ; copy 42 hex into bx

42H is 100 0001 in binary. This padded out with nine 0-bits on the
left-hand side to fill all 16-bits of the register.

0000 0000 0100 0001BX Mov BX, 41H42H

015

The effect of executing MOV BX, 41H is to overwrite the BX register with
41H in binary.

Introduction to 8086 Assembly Language Programming 10

Exercises:

1) Write instructions to:
Load character ? into register bx
Load space character into register cx
Load 26 (decimal) into register cx
Copy contents of ax to bx and dx

2) What errors are present in the following :
mov ax 3d
mov 23, ax
mov cx, ch
move ax, 1h
add 2, cx
add 3, 6
inc ax, 2

3) Write instructions to evaluate the arithmetic expression 5 + (6-2)
leaving the result in ax using (a) 1 register, (b) 2 registers, (c) 3
registers

4) Write instructions to evaluate the expressions:

a = b + c –d

z = x + y + w – v +u

5) Rewrite the expression in 4) above but using the registers ah, al,
bh, bl and so on to represent the variables: a, b, c, z, x, y, w, u, and v.

Introduction to 8086 Assembly Language Programming Section 2 1

Input and Output (I/O) in 8086 Assembly Language

Each microprocessor provides instructions for I/O with the devices
that are attached to it, e.g. the keyboard and screen.

The 8086 provides the instructions in for input and out for
output. These instructions are quite complicated to use, so we
usually use the operating system to do I/O for us instead.

The operating system provides a range of I/O subprograms, in
much the same way as there is an extensive library of subprograms
available to the C programmer. In C, to perform an I/O operation,
we call a subprogram using its name to indicate its operations, e.g.
putchar(), printf(), getchar(). In addition we may pass
a parameter to the subprogram, for example the character to be
displayed by putchar() is passed as a parameter e.g.
putchar(c).

In assembly language we must have a mechanism to call the
operating system to carry out I/O.

In addition we must be able to tell the operating system what kind
of I/O operation we wish to carry out, e.g. to read a character from
the keyboard, to display a character or string on the screen or to do
disk I/O.

Finally, we must have a means of passing parameters to the
operating subprogram.

Introduction to 8086 Assembly Language Programming Section 2 2

In 8086 assembly language, we do not call operating system
subprograms by name, instead, we use a software interrupt
mechanism

An interrupt signals the processor to suspend its current activity
(i.e. running your program) and to pass control to an interrupt
service program (i.e. part of the operating system).

A software interrupt is one generated by a program (as opposed to
one generated by hardware).

The 8086 int instruction generates a software interrupt.

It uses a single operand which is a number indicating which MS-
DOS subprogram is to be invoked.

For I/O and some other operations, the number used is 21h.

Thus, the instruction int 21h transfers control to the operating
system, to a subprogram that handles I/O operations.

This subprogram handles a variety of I/O operations by calling
appropriate subprograms.

This means that you must also specify which I/O operation (e.g.
read a character, display a character) you wish to carry out. This is
done by placing a specific number in a register. The ah register is
used to pass this information.

For example, the subprogram to display a character is subprogram
number 2h.

Introduction to 8086 Assembly Language Programming Section 2 3

This number must be stored in the ah register. We are now in a
position to describe character output.

When the I/O operation is finished, the interrupt service program
terminates and our program will be resumed at the instruction
following int.

3.3.1 Character Output
The task here is to display a single character on the screen. There
are three elements involved in carrying out this operation using the
int instruction:

1. We specify the character to be displayed. This is done by storing
the character’s ASCII code in a specific 8086 register. In this case
we use the dl register, i.e. we use dl to pass a parameter to the
output subprogram.

2. We specify which of MS-DOS’s I/O subprograms we wish to use.
The subprogram to display a character is subprogram number 2h.
This number is stored in the ah register.

3. We request MS-DOS to carry out the I/O operation using the int
instruction. This means that we interrupt our program and transfer
control to the MS-DOS subprogram that we have specified using
the ah register.

Example 1: Write a code fragment to display the character ’a’ on
the screen:

Introduction to 8086 Assembly Language Programming Section 2 4

C version:
putchar(‘a‘) ;

8086 version:

mov dl, ‘a‘ ; dl = ‘a‘
mov ah, 2h ; character output subprogram
int 21h ; call ms-dos output character

As you can see, this simple task is quite complicated in assembly
language.

3.3.2 Character Input
The task here is to read a single character from the keyboard.
There are also three elements involved in performing character
input:

1. As for character output, we specify which of MS-DOS’s I/O
subprograms we wish to use, i.e. the character input from the
keyboard subprogram. This is MS-DOS subprogram number 1h.
This number must be stored in the ah register.

2. We call MS-DOS to carry out the I/O operation using the int
instruction as for character output.

3. The MS-DOS subprogram uses the al register to store the
character it reads from the keyboard.
Example 2: Write a code fragment to read a character from the
keyboard:

C version:

Introduction to 8086 Assembly Language Programming Section 2 5

c = getchar() ;

8086 Version:
mov ah, 1h ; keyboard input subprogram
int 21h ; character input

; character is stored in al
mov c, al ; copy character from al to c

The following example combines the two previous ones, by
reading a character from the keyboard and displaying it.

Example 3: Reading and displaying a character:

C version:
c = getchar() ;
putchar(c) ;

8086 version:

mov ah, 1h ; keyboard input subprogram
int 21h ; read character into al

mov dl, al ; copy character to dl

mov ah, 2h ; character output subprogram
int 21h ; display character in dl

Introduction to 8086 Assembly Language Programming Section 2 6

A Complete Program
We are now in a position to write a complete 8086 program. You
must use an editor to enter the program into a file. The process of
using the editor (editing) is a basic form of word processing. This
skill has no relevance to programming.

We use Microsoft’s MASM and LINK programs for assembling and
linking 8086 assembly language programs. MASM program files
should have names with the extension (3 characters after period)
asm. We will call our first program prog1.asm, it displays the
letter ‘a‘ on the screen. (You may use any name you wish. It is a
good idea to choose a meaningful file name). Having entered and
saved the program using an editor, you must then use the MASM
and LINK commands to translate it to machine code so that it may
be executed as follows:

C> masm prog1

If you have syntax errors, you will get error messages at this point.
You then have to edit your program, correct them and repeat the
above command, otherwise proceed to the link command,
pressing Return in response to prompts for file names from masm
or link.

C> link prog1

To execute the program, simply enter the program name and press
the Return key:

C> prog1
a
C>

Introduction to 8086 Assembly Language Programming Section 2 7

Example 4: A complete program to display the letter ‘a‘ on the
screen:

; prog1.asm: displays the character ‘a’ on the screen
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 100h

.code
start:

mov dl, ‘a’ ; store ascii code of ‘a’ in dl

mov ah, 2h ; ms-dos character output function
int 21h ; displays character in dl register

mov ax, 4c00h ; return to ms-dos
int 21h
end start

The first three lines of the program are comments to give the name
of the file containing the program, explain its purpose, give the
name of the author and the date the program was written.

The first two directives, .model and .stack are concerned with
how your program will be stored in memory and how large a stack
it requires. The third directive, .code , indicates where the
program instructions (i.e. the program code) begin.

For the moment, suffice it to say that you need to start all assembly
languages programs in a particular format (not necessarily that
given above.

Introduction to 8086 Assembly Language Programming Section 2 8

 Your program must also finish in a particular format, the end
directive indicates where your program finishes.

In the middle comes the code that you write yourself.

You must also specify where your program starts, i.e. which is the
first instruction to be executed. This is the purpose of the label,
start.

(Note: We could use any label, e.g. begin in place of start).

This same label is also used by the end directive. When a program
has finished, we return to the operating system.

Like carrying out an I/O operation, this is also accomplished by
using the int instruction. This time MS-DOS subprogram number
4c00h is used.

It is the subprogram to terminate a program and return to MS-
DOS. Hence, the instructions:

mov ax, 4c00h ; Code for return to MS-DOS
int 21H ; Terminates program

terminate a program and return you to MS-DOS.

Time-saving Tip
Since your programs will start and finish using the same format,
you can save yourself time entering this code for each program.
You create a template program called for example,
template.asm, which contains the standard code to start and

Introduction to 8086 Assembly Language Programming Section 2 9

finish your assembly language programs. Then, when you wish to
write a new program, you copy this template program to a new file,
say for example, prog2.asm, as follows (e.g. using the MS-DOS
copy command):

C> copy template.asm io2.asm

You then edit prog2.asm and enter your code in the appropriate
place.

Example 3.9: The following template could be used for our first
programs:

; <filename goes here>.asm:
; Author:
; Date:

.model small

.stack 100h

.code
start:

; < your code goes here >

mov ax, 4c00h ; return to ms-dos
int 21h
end start

To write a new program, you enter your code in the appropriate
place as indicated above.

Introduction to 8086 Assembly Language Programming Section 2 10

Example 3.10: Write a program to read a character from the
keyboard and display it on the screen:

; prog2.asm: read a character and display it
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 100h

.code
start:

mov ah, 1h ; keyboard input subprogram
int 21h ; read character into al

mov dl, al

mov ah, 2h ; display subprogram
int 21h ; display character in dl

mov ax, 4c00h ; return to ms-dos
int 21h

end start

Assuming you enter the letter ‘B’ at the keyboard when you
execute the program, the output will appear as follows:

C> prog2
BB

Rewrite the above program to use a prompt:
C>prog4
?B B

Introduction to 8086 Assembly Language Programming Section 2 11

; prog4.asm: prompt user with ?
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 100h

.code
start:
; display ?

mov dl, ‘?’ ; copy ? to dl
mov ah, 2h ; display subprogram
int 21h ; call ms-dos to display ?

; read character from keyboard
mov ah, 1h ; keyboard input subprogram
int 21h ; read character into al

; save character entered while we display a space
mov bl, al ; copy character to bl

; display space character
mov dl, ‘ ’ ; copy space to dl
mov ah, 2h ; display subprogram
int 21h ; call ms-dos to display space

; display character read from keyboard
mov dl, bl ; copy character entered to dl
mov ah, 2h ; display subprogram
int 21h ; display character in dl

mov ax, 4c00h ; return to ms-dos
int 21h
end start

Note: In this example we must save the character entered (we save
it in bl) so that we can use ax for the display subprogram number.

Introduction to 8086 Assembly Language Programming Section 2 12

Example 3.12: Modify the previous program so that the
character entered, is displayed on the following line giving the
effect:

C> io4
? x
x

In this version, we need to output the Carriage Return and
Line-feed characters.

Carriage Return, (ASCII 13D) is the control character to
bring the cursor to the start of a line.

Line-feed (ASCII 10D) is the control character that brings the
cursor down to the next line on the screen.

(We use the abbreviations CR and LF to refer to Return and
Line-feed in comments.)

In C and Java programs we use the newline character ‘\n’ to
generate a new line which in effect causes a Carriage Return
and Linefeed to be transmitted to your screen.

Introduction to 8086 Assembly Language Programming Section 2 13

; io4.asm: prompt user with ?,
; read character and display the CR, LF characters
; followed by the character entered.
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 100h

.code
start:
; display ?

mov dl, ‘?’ ; copy ? to dl
mov ah, 2h ; display subprogram
int 21h ; display ?

; read character from keyboard
mov ah, 1h ; keyboard input subprogram
int 21h ; read character into al

; save character while we display a Return and Line-
feed

mov bl, al ; save character in bl

;display Return
mov dl, 13d ; dl = CR
mov ah, 2h ; display subprogram
int 21h ; display CR

;display Line-feed
mov dl, 10d ; dl = LF
mov ah, 2h ; display subprogram
int 21h ; display LF

; display character read from keyboard
mov dl, bl ; copy character to dl
mov ah, 2h ; display subprogram
int 21h ; display character in dl

mov ax, 4c00h ; return to ms-dos
int 21h
end start

Introduction to 8086 Assembly Language Programming Section 2 14

Note: Indentation and documentation, as mentioned before,
are the responsibility of the programmer. Program 3.13 below
is a completely valid way of entering the program presented
earlier in Example 3.12:

Example 3.13 without indentation and comments.

.model small

.stack 100h

.code
start:
 mov dl,‘?’
 mov ah,2h
 int 21h
 mov ah,1h
 int 21h
 mov bl,al
 mov dl,13d
 mov ah,2h
 int 21h
 mov dl,10d
 mov ah,2h
 int 21h
 mov dl,bl
 mov ah,2h
 int 21h
 mov ax,4c00h
 int 21h
end start

Which program is easier to read and understand ?

Introduction to 8086 Assembly Language Programming Section 2 15

String Output
A string is a list of characters treated as a unit. In
programming languages we denote a string constant by using
quotation marks, e.g. “Enter first number”.

In 8086 assembly language, single or double quotes may be
used.

Defining String Variables
The following 3 definitions are equivalent ways of defining a
string “abc“:

version1 db “abc” ; string constant
version2 db ‘a’, ‘b’, ‘c’ ; character constants
version3 db 97, 98, 99 ; ASCII codes

The first version uses the method of high level languages and
simply encloses the string in quotes. This is the preferred
method.

The second version defines a string by specifying a list of the
character constants that make up the string.

The third version defines a string by specifying a list of the
ASCII codes that make up the string

We may also combine the above methods to define a string as
in the following example:

message db “Hello world”, 13, 10, ‘$’

Introduction to 8086 Assembly Language Programming Section 2 16

The string message contains ‘Hello world’ followed by
Return (ASCII 13), Line-feed (ASCII 10) and the ‘$’
character.

This method is very useful if we wish to include control
characters (such as Return) in a string.

We terminate the string with the ‘$’ character because there
is an MS-DOS subprogram (number 9h) for displaying
strings which expects the string to be terminated by the ‘$’
character.

It is important to understand that db is not an assembly
language instruction. It is called a directive.

A directive tells the assembler to do something, when
translating your program to machine code.

The db directive tells the assembler to store one or more
bytes in a named memory location. From the above
examples, the named locations are v e r s i o n 1 ,
version2, version3 and message.

These are in effect string variables.

In order to display a string we must know where the string
begins and ends.

The beginning of string is given by obtaining its address using
the offset operator.

Introduction to 8086 Assembly Language Programming Section 2 17

The end of a string may be found by either knowing in
advance the length of the string or by storing a special
character at the end of the string which acts as a sentinel.

We have already used MS-DOS subprograms for character
I/O (number 1h to read a single character from the keyboard
and number 2h to display a character on the screen.)

String Output
MS-DOS provides subprogram number 9h to display strings
which are terminated by the ‘$’ character. In order to use it
we must:

1 Ensure the string is terminated with the ‘$’ character.

2 Specify the string to be displayed by storing its address in
the dx register.

3 Specify the string output subprogram by storing 9h in ah.

4 Use int 21h to call MS-DOS to execute subprogram
9h.

The following code illustrates how the string ‘Hello
world’, followed by the Return and Line-feed characters,
can be displayed.

Introduction to 8086 Assembly Language Programming Section 2 18

Example 3.14: Write a program to display the message
‘Hello world’ followed by Return and Line-feed :

; io8.asm: Display the message ‘Hello World’
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 100h

.data
message db ‘Hello World‘, 13, 10, ‘$‘

.code
start:

mov ax, @data
mov ds, ax

; copy address of message to dx
mov dx, offset message

mov ah, 9h ; string output
int 21h ; display string

mov ax, 4c00h
int 21h

end start

In this example, we use the .data directive. This directive is
required when memory variables are used in a program.

Introduction to 8086 Assembly Language Programming Section 2 19

The instructions

mov ax, @data
mov ds, ax

are concerned with accessing memory variables and must be
used with programs that use memory variables. See textbook
for further information.

The offset operator allows us to access the address of a
variable. In this case, we use it to access the address of
message and we store this address in the dx register.

Subprogram 9h can access the string message (or any
string), once it has been passed the starting address of the
string.

Exercises

• Write a program to display ‘MS-DOS’ using (a) character
output and (b) using string output.

• Write a program to display the message ‘Ding! Ding! Ding!’
and output ASCII code 7 three times. (ASCII code 7 is the
Bel character. It causes your machine to beep!).

• Write a program to beep, display ‘?’ as a prompt, read a
character and display it on a new line.

Introduction to 8086 Assembly Language Programming Section 2 20

Control Flow Instructions: Subprograms
A subprogram allows us to give a name to a group of
instructions and to use that name when we wish to execute
those instructions, instead of having to write the instructions
again.

For example, the instructions to display a character could be
given the name putc (or whatever you choose). Then to
display a character you can use the name putc which will
cause the appropriate instructions to be executed.

This is referred to as calling the subprogram. In 8086
assembly language, the instruction call is used to invoke a
subprogram, so for example, a putc subprogram would be
called as follows:

call putc ; Display character in dl

The process of giving a group of instructions a name is
referred to as defining a subprogram. This is only done once.

Definition of putc, getc and puts subprograms.

putc: ; display character in dl
mov ah, 2h
int 21h
ret

getc: ; read character into al
mov ah, 1h
int 21h
ret

Introduction to 8086 Assembly Language Programming Section 2 21

puts: ; display string terminated by $
; dx contains address of string

mov ah, 9h
int 21h
ret

The ret instruction terminates the subprogram and
arranges for execution to resume at the instruction
following the call instruction.

We usually refer to that part of a program where execution
begins as the main program.

In practice, programs consist of a main program and a
number of subprograms. It is important to note that
subprograms make our programs easier to read, write and
maintain even if we only use them once in a program.

Note: Subprograms are defined after the code to terminate
the program, but before the end directive.

If we placed the subprograms earlier in the code, they
would be executed without being called (execution would
fall through into them). This should not be allowed to
happen.

The following program illustrates the use of the above
subprograms.

C> sub
Enter a character: x
You entered: x

Introduction to 8086 Assembly Language Programming Section 2 22

; subs.asm: Prompt user to enter a character
; and display the character entered
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 100h

.data
prompt db ‘Enter a character: $‘
msgout db ‘You entered: $‘

.code
start:

mov ax, @data
mov ds, ax

; copy address of message to dx
mov dx, offset prompt
call puts ; display prompt

call getc ; read character into al
mov bl, al ; save character in bl

;display next message
mov dx, offset msgout
call puts ; display msgout

; display character read from keyboard
mov dl, bl ; copy character to dl
call putc

mov ax, 4c00h ; return to ms-dos
int 21h

Introduction to 8086 Assembly Language Programming Section 2 23

Defining Constants: Macros

The equ directive is used to define constants.

For example if we wish to use the names CR and LF, to
represent the ASCII codes of Carriage Return and Line-feed,
we can use this directive to do so.

CR equ 13d
LF equ 10d
MAX equ 1000d
MIN equ 0

The assembler, replaces all occurrences of CR with the
number 13 before the program is translated to machine code.
It carries out similar replacements for the other constants.

Essentially, the equ directive provides a text substitution
facility. One piece of text (CR) is replaced by another piece of
text (13), in your program. Such a facility is often call a
macro facility.

We use constants to make our programs easier to read and
understand.

Introduction to 8086 Assembly Language Programming Section 2 24

Example 3.18: The following program, displays the message
‘Hello World’, and uses the equ directive.

; io9.asm: Display the message ‘Hello World’
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 100h

.data

CR equ 13d
LF equ 10d

message db ‘Hello World’, CR, LF, ‘$’

.code
start:

mov ax, @data
mov ds, ax

mov dx, offset message
call puts ; display message

mov ax, 4c00h
int 21h

; User defined subprograms

puts: ; display a string terminated by $
; dx contains address of string

mov ah, 9h
int 21h ; output string
ret

end start

Introduction to 8086 Assembly Language Programming Section 2 25

Introduction to 8086 Assembly Language Programming(alp4) 1

Character Conversion: Uppercase to Lowercase

To convert an uppercase letter to lowercase, we note that
ASCII codes for the uppercase letters ‘A’ to ‘Z’ form a
sequence from 65 to 90.

The corresponding lowercase letters ‘a‘ to ‘z’ have codes in
sequence from 97 to 122.

We say that ASCII codes form a collating sequence and we
use this fact to sort textual information into alphabetical order.

To convert from an uppercase character to its lowercase
equivalent, we add 32 to the ASCII code of the uppercase
letter to obtain the ASCII code of the lowercase equivalent.

To convert from lowercase to uppercase, we subtract 32 from
the ASCII code of the lowercase letter to obtain the ASCII
code of the corresponding uppercase letter.

The number 32 is obtained by subtracting the ASCII code for
‘A’ from the ASCII code for ‘a’
(i.e. ‘A’ - ‘a’ = 97 - 65 = 32).

Example 3.19: Write a program to prompt the user to enter an
uppercase letter, read the letter entered and display the
corresponding lowercase letter. The program should then
convert the letter to its to lowercase equivalent and display it,
on a new line.

Introduction to 8086 Assembly Language Programming(alp4) 2

; char.asm: character conversion: uppercase to
lowercase

.model small

.stack 100h

CR equ 13d
LF equ 10d

.data
msg1 db ‘Enter an uppercase letter: $’
result db CR, LF, ‘The lowercase equivalent is:
$’

.code

; main program
start:

mov ax, @data
mov ds, ax

mov dx, offset msg1
call puts ; prompt for uppercase letter
call getc ; read uppercase letter
mov bl, al ; save character in bl

add bl, 32d ; convert to lowercase

mov dx, offset result
call puts ; display result message
mov dl, bl
call putc ; display lowercase letter

mov ax, 4c00h
int 21h ; return to ms-dos

Introduction to 8086 Assembly Language Programming(alp4) 3

; user defined subprograms

puts: ; display a string terminated by $
; dx contains address of string

mov ah, 9h
int 21h ; output string
ret

putc: ; display character in dl
mov ah, 2h
int 21h
ret

getc: ; read character into al
mov ah, 1h
int 21h
ret

end start

Executing this program produces as output:

Enter an uppercase letter: G
The lowercase equivalent is: g

The string result is defined to begin with the Return and
Line-feed characters so that it will be displayed on a new line.
An alternative would have been to include the two characters
at the end of the string msg1, before the ‘$’ character, e.g.

msg1 db ‘Enter an uppercase letter: ’,CR, LF, ‘$’

After displaying msg1, as defined above, the next item to be
displayed will appear on a new line.

Introduction to 8086 Assembly Language Programming(alp4) 4

Exercises
3.11 Modify the above program to convert a lowercase letter
to its uppercase equivalent.

3.12 Write a program to convert a single digit number such as
5 to its character equivalent ‘5’ and display the character.

I/O Subprogram Consistency
We have now written three I/O subprograms: putc, getc
and puts.

One difficulty with these subprograms is that they use
different registers for parameters based on the requirements of
the MS-DOS I/O subprograms.

This means that we have to be careful to remember which
register (al, dl, dx) to use to pass parameters.

A more consistent approach would be to use the same register
for passing the parameters to all the I/O subprograms, for
example the ax register could be used.

Since we cannot change the way MS-DOS operates, we can
do this by modifying our subprograms. We will use al to
contain the character to be displayed by putc and ax to
contain the address of the string to be displayed by puts.
The getc subprogram returns the character entered in al
and so does not have to be changed.

Introduction to 8086 Assembly Language Programming(alp4) 5

Example 3.20: Revised versions of puts and putc:

puts: ; display a string terminated by $
; ax contains address of string

mov dx, ax ; copy address to dx for ms-dos
mov ah, 9h
int 21h ; call ms-dos to output string
ret

putc: ; display character in al
mov dl, al ; copy al to dl for ms-dos
mov ah, 2h
int 21h
ret

Introduction to 8086 Assembly Language Programming(alp4) 6

Example 3.21: To illustrate the use of the new definitions of
putc and puts , we rewrite the Program 3.19, which
converts an uppercase letter to its lowercase equivalent:

; char2.asm: character conversion: uppercase to
lowercase

.model small

.stack 100h

CR equ 13d
LF equ 10d

.data

msg1 db ‘Enter an uppercase letter: $'
result db CR, LF, ‘The lowercase equivalent is: $'

.code
; main program
start:

mov ax, @data
mov ds, ax

mov ax, offset msg1
call puts
call getc ; read uppercase letter
mov bl, al ; save character in bl

add bl, 32d ; convert to lowercase

mov ax, offset result
call puts ; display result message
mov al, bl
call putc ; display lowercase letter

mov ax, 4c00h
int 21h ; return to ms-dos

Introduction to 8086 Assembly Language Programming(alp4) 7

; user defined subprograms

puts: ; display a string terminated by $
; ax contains address of string

mov dx, ax
mov ah, 9h
int 21h ; call ms-dos to output string
ret

putc: ; display character in al
mov dl, al
mov ah, 2h
int 21h
ret

getc: ; read character into al
mov ah, 1h
int 21h
ret

end start

3.4.1 Saving Registers
There is one disadvantage in using the above method of
implementing putc and puts.

We now use two registers where formerly we only used one
register to achieve the desired result. This reduces the number
of registers available for storing other information.

Introduction to 8086 Assembly Language Programming(alp4) 8

Another important point also arises. In the puts subprogram,
for example, the dx register is modified. I

f we were using this register in a program before the call to
puts then the information stored in dx would be lost, unless
we saved it before calling puts.

This can cause subtle but serious errors, in programs, that are
difficult to detect. The following code fragment illustrates the
problem:

mov dx, 12 ; dx = 12

mov ax, offset msg1 ; display message msg1

call puts ; dx gets modified
add dx, 2 ; dx will NOT contain 14

It may be much later in the execution of the program before
this error manifests itself. Beginners make this type of error
quite frequently in assembly language programs.

When a program behaves strangely, it is usually a good
debugging technique to check for this type of situation, i.e.
check that subprograms do not modify registers which you are
using for other purposes.

This is a general problem with all subprograms that change
the values of registers. All of our subprograms carrying out
I/O change the value of the ah register. Thus, if we are using
the ah register before calling a subprogram, we must save it
before the subprogram is called.

Introduction to 8086 Assembly Language Programming(alp4) 9

In addition, the MS-DOS subprogram invoked using the int
instruction may also change a register’s value. For example,
subprogram number 2h (used by getc) does this. It modifies
the al register to return the value entered at the keyboard.
The MS-DOS subprogram may also change other register
values and you must be careful to check for this when using
such subprograms.

There is a straightforward solution to this problem. We can
and should write our subprograms so that before modifying
any registers they first save the values of those registers.
Then, before returning from a subprogram, we restore the
registers to their original values.

(In the case of getc, however, we would not save the value
of the al register because we want getc to read a value into
that register.)

The stack is typically used to save and restore the values of
registers used in subprograms.

The stack is an area of memory (RAM) where we can
temporarily store items. We say that we “push the item onto
the stack” to save it.

To get the item back from the stack, we “pop the item from
the stack”.

The 8086 provides push and pop instructions for storing and
retrieving items from the stack. See Chapter 2 for details.

Introduction to 8086 Assembly Language Programming(alp4) 10

Example 3.22: We now rewrite the getc, putc and puts
subprograms to save the values of registers and restore them
appropriately. The following versions of getc, putc and
puts are therefore safer in the sense that registers do not get
changed without the programmer realising it.

puts: ; display a string terminated by $
; dx contains address of string

push ax ; save ax
push bx ; save bx
push cx ; save cx
push dx ; save dx

mov dx, ax
mov ah, 9h
int 21h ; call ms-dos to output string

pop dx ; restore dx
pop cx ; restore cx
pop bx ; restore bx
pop ax ; restore ax
ret

putc: ; display character in al
push ax ; save ax
push bx ; save bx
push cx ; save cx
push dx ; save dx

mov dl, al
mov ah, 2h
int 21h

pop dx ; restore dx
pop cx ; restore cx
pop bx ; restore bx
pop ax ; restore ax
ret

Introduction to 8086 Assembly Language Programming(alp4) 11

getc: ; read character into al
push bx ; save bx
push cx ; save cx
push dx ; save dx

mov ah, 1h
int 21h

pop dx ; restore dx
pop cx ; restore cx
pop bx ; restore bx

ret

Note that we pop values from the stack in the reverse order
to the way we pushed them on, due to the last-in-first-out
(LIFO) nature of stack operations.

From now on, when we refer to getc, putc and puts in
these notes, the definitions above are those intended.

Note: It is vital, when using the stack in subprograms, to pop
off all items pushed on the stack in the subprogram before
returning from the subprogram.

Failure to do so leaves an item on the stack which will be
used by the ret instruction as the return address. This will
cause your program to behave weirdly to say the least! If you
are lucky, it will crash! Otherwise, it may continue to execute
from any point in the program, producing baffling results.

The point is worth repeating: when using the stack in a
subprogram, be sure to remove all items pushed on, before
returning from the subprogram.

Introduction to 8086 Assembly Language Programming(alp4) 12

3.5 Control Flow: Jump Instructions

3.5.1 Unconditional Jump Instruction
The 8086 unconditional jmp instruction causes control flow
(i.e. which instruction is next executed) to transfer to the point
indicated by the label given in the jmp instruction.

Example 3.23: This example illustrates the use of the jmp
instruction to implement an endless loop – not something you
would noramlly wish to do!

again:
call getc ; read a character
call putc ; display character
jmp again ; jump to again

This is an example of a backward jump as control is
transferred to an earlier place in the program.

The code fragment causes the instructions between the label
again and the jmp instruction to be repeated endlessly.

You may place a label at any point in your program and the
label can be on the same line as an instruction e.g.

again: call getc ; read a character

The above program will execute forever
unless you halt it with an interrupt,
e.g. by pressing ctrl/c or by switching
off the machine.

Introduction to 8086 Assembly Language Programming(alp4) 13

Example 3.24: The following code fragment illustrates a
forward jump, as control is transferred to a later place in the
program:

call getc ; read a character
call putc ; display the character
jmp finish ; jump to label finish

<do other things>; Never gets done !!!

finish:
mov ax, 4c00h
int 21h

In this case the code between jmp instruction and the label
finish will not be executed because the jmp causes control
to skip over it.

3.5.2 Conditional Jump Instructions
The 8086 provides a number of conditional jump instructions
(e.g. je , jne , ja). These instructions will only cause a
transfer of control if some condition is satisfied.

For example, when an arithmetic operation such as add or
subtract is carried out, the CPU sets or clears a flag (Z-flag) in
the status register to record if the result of the operation was
zero, or another flag if the result was negative and so on.

If the Z-flag has value 1, it means that the result of the last
instruction which affected the Z-flag was 0.

If the Z-flag has value 0, it means that the result of the last
instruction which affected the Z-flag was not 0.

Introduction to 8086 Assembly Language Programming(alp4) 14

By testing these flags, either individually or a combination of
them, the conditional jump instructions can handle the various
conditions (==, !=, <, >, <=, >=) that arise when comparing
values. In addition, there are conditional jump instructions to
test for conditions such as the occurrence of overflow or a
change of sign.

The conditional jump instructions are sometimes called
jump-on-condition instructions. They test the values of the
flags in the status register.

(The value of the cx register is used by some of them). One
conditional jump is the jz instruction which jumps to another
location in a program just like the jmp instruction except that
it only causes a jump if the Z-flag is set to 1, i.e. if the result
of the last instruction was 0. (The jz instruction may be
understood as standing for ‘jump on condition zero’ or ‘jump
on zero’).

Introduction to 8086 Assembly Language Programming(alp4) 15

Example 3.25: Using the jz instruction.

mov ax, 2 ; ax = 2
sub ax, bx ; ax = 2 - bx
jz nextl ; jump if (ax-bx) == 0
inc ax ; ax = ax + 1

nextl:
inc bx

The above is equivalent to:

ax = 2;
if (ax != bx)
{

ax = ax + 1 ;
}

bx = bx + 1 ;

Introduction to 8086 Assembly Language Programming(alp4) 16

In this example, the Z-flag will be set (to 1) only if bx
contains 2. If it does, then the jz instruction will cause the
jump to take place as the test of the Z-flag yields true.

We are effectively comparing ax with bx and jumping if they
are equal.

The 8086 provides the cmp instruction for such comparisons
It works exactly like the sub instruction except that the
operands are not affected, i.e. it subtracts the source operand
from the destination but discards the result leaving the
destination operand unchanged. However, it does modify the
status register. All the flags that would be set or reset by sub
are set or reset by cmp. So, if you wish to compare two values
it makes more sense to use the cmp instruction.

Example 3.26: The above example could be rewritten using
cmp:

mov ax, 2 ; ax becomes 2
cmp ax, bx ; set flags according to (ax - bx)
jz equals ; jump if (ax == bx)
inc ax ; executed only if bx != ax

equals:
inc bx

Note: The cmp compares the destination operand with the
source operand. The order is obviously important because for
example, an instruction such as jng dest, source will
cause a branch only if dest <= source .

Introduction to 8086 Assembly Language Programming(alp4) 17

Most jump-on-condition instructions have more than one
name, for example the jz (jump on zero) instruction is also
called je (jump on equal). Thus the above code could be
written:

cmp ax, bx
je equals ; jump if ax == bx

This name for the instruction makes the code more readable in
a situation where we are testing two values for equality.

The jump-on-condition instructions may be used to jump
forwards (as in the above example) or backwards and thus
implement loops.

There are sixteen jump-on-condition instructions which test
whether flags or combinations of flags are set or cleared.

However, rather than concentrating on the flag settings, it is
easier to understand them in terms of comparing numbers
(signed and unsigned separately) as equal, not equal, less
than, greater than, greater than or equal and less than or equal.

Introduction to 8086 Assembly Language Programming(alp4) 18

Table 3.1 lists the jump-on-condition instructions. It gives the
alternative names for those that have them.

Name(s) Jump if Flags tested
je / jz equal/zero zf = 1
jne / jnz not equal/not zero zf = 0

Operating with Unsigned Numbers

ja / jnbe above/not below or equal (cf or zf) = 0
jae / jnb above or equal/not below cf = 0

jb / jnae / jc below/not above or equal/carry cf = 1
jbe / jna below or equal/not above (cf or zf) = 1

Operating with Signed Numbers

jg / jnle greater/not less than nor equal zf=0 and
sf = of
jge / jnl greater or equal/not less sf = of

jl / jnge less /not greater nor equal sf <> of
jle / jng less or equal/not greater (zf=1) or
(sf!=of)

jo overflow of = 1
jno not overflow of = 0

jp / jpe parity/parity even pf = 1
jnp / jpo no parity/odd parity pf = 0

js sign sf = 1
jns no sign sf = 0

Table 3.1: Conditional jump instructions

Introduction to 8086 Assembly Language Programming(alp4) 19

Notes:
• cf, of, zf, pf and sf are the carry, overflow, zero, parity
and sign flags of the flags (status) register.

• (cf or zf) = 1 means that the jump is made if either cf or
zf is set to 1.

• In the above instructions, the letter a can be taken to mean
above and the letter b to mean below. Instructions using these
letters (e.g. ja, jb etc.) operate on unsigned numbers.

The letter g can be taken to mean greater than and the letter l
to mean less than. Instructions using these letters (e.g. jg, jl
etc.) operate on signed numbers.

It is the programmer’s responsibility to use the correct
instruction depending on whether signed or unsigned numbers
are being manipulated.

There are also four jump instructions involving the cx
register: jcxz, loop, loope, loopne. For example, the
jcxz instruction causes a jump if the contents of the cx
register is zero.

Introduction to 8086 Assembly Language Programming(alp4) 20

3.5.3 Implementation of if-then control structure
The general form of the if-then control structure in C is:

if (condition)
{

/* action statements */
}
<rest of program>

It consists of a condition to be evaluated and an action to be
performed if the condition yields true.

Example 3.27:

C version
if (i == 10)
{

i = i + 5 ;
j = j + 5 ;

}
/* Rest of program */

Introduction to 8086 Assembly Language Programming(alp4) 21

There are two ways of writing this in assembly language. One
method tests if the condition (i == 10) is true. It branches
to carry out the action if the condition is true. If the condition
is false, there is a second unconditional branch to the next part
of the program. This is written as:

8086 version 1:

cmp i, 10
je label1 ; if i == 10 goto label1
jmp rest ; otherwise goto rest

label1: add i, 5
add j, 5

rest: ; rest of program

The second method tests if the condition (i != 10) is
true, branching to the code to carry out the rest of the program
if this is the case. If this is not the case, then the action
instructions are executed:

8086 version 2:

cmp i, 10
jne rest ; if i != 10 goto rest
add i, 5 ; otherwise do action part
add j, 5

rest: ; rest of program

The second method only requires a single branch instruction
and is to be preferred.

Introduction to 8086 Assembly Language Programming(alp4) 22

So, in general, to implement an if-then construct in assembly
language, we test the inverse of the condition that would be
used in the high level language form of the construct, as in
version 2 above.

3.5.4 Implementation of if-then-else control
structure
The general form of this control structure in C is:

if (condition)
{

/* action1 statements */
}
else
{

/* action2 statements */
}

Example 3.28: Write a code fragment to read a character
entered by the user and compare it to the character ‘A’.
Display an appropriate message if the user enters an ‘A’. This
code fragment is the basis of a guessing game program.

C version:
printf(“Guessing game: Enter a letter (A

to Z): “);
c = getchar() ;
if (c == ‘A’)

printf(“You guessed correctly !! “);
else

printf(“Sorry incorrect guess “) ;

Introduction to 8086 Assembly Language Programming(alp4) 23

8086 version:
mov ax, offset prompt ; prompt user
call puts
call getc ; read character

cmp al, ‘A’ ; compare it to ‘A’
jne is_not_an_a ; jump if not ‘A’
mov ax, offset yes_msg ; if

action
call puts ; display correct guess

jmp end_else ; skip else action
is_not_an_A: ; else action

mov ax, offset no_msg
call puts ; display wrong guess

end_else:

If the value read is the letter ‘A‘, then the jne will not be
executed, yes_msg will be displayed and control transferred
to end_else. If the value entered is not an ‘A‘, then the
jne is executed and control is transferred to is_not_an_A.

Introduction to 8086 Assembly Language Programming(alp4) 24

Example 3.29: The complete program to play a guessing
game based on the above code fragment is:

; guess.asm: Guessing game program.
;User is asked to guess which letter the program
‘knows’
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 100h

CR equ 13d
LF equ 10d

.data
prompt db “Guessing game: Enter a letter (A to Z):
$“
yes_msg db CR, LF,“You guessed correctly !! $“
no_msg db CR, LF,“Sorry incorrect guess $“

.code
start:

mov ax, @data
mov ds, ax
mov ax, offset prompt
call puts ; prompt for input

call getc ; read character
cmp al, ‘A’
jne is_not_an_a ; if (al != ‘A’) skip

action
mov ax, offset yes_msg ; if action
call puts ; display correct guess
jmp end_else1 ; skip else action

is_not_an_A: ; else action
mov ax, offset no_msg
call puts ; display wrong guess

end_else1:

Introduction to 8086 Assembly Language Programming(alp4) 25

finish: mov ax, 4c00h
int 21h

; User defined subprograms
; < puts getc defined here>

end start

Note: In this program we use the label end_else1 to
indicate the end of the if-then-else construct.

It is important, if you use this construct a number of times in a
program, to use different labels each time the construct is
used. So a label such as end_else2 could be used for the
second occurrence of the construct although it is to be
preferred if a more meaningful label such as is_not_an_A
is used.

Introduction to 8086 Assembly Language Programming(alp4) 26

Example 3.30: Modify Program 3.19, which converts an
uppercase letter to lowercase, to test that an uppercase letter
was actually entered. To test if a letter is uppercase, we need
to test if its ASCII code is in the range 65 to 90 (‘A’ to ‘Z’).
In C such a test could be written as:

if (c >= ‘A‘ && c <= ‘Z‘)
/* it is uppercase letter */

The opposite condition, i.e. to test if the letter is not uppercase
may be written as:

if (c < ‘A‘ || c > ‘Z‘)
/* it is not uppercase letter */

The variable c contains the ASCII code of the character
entered. It is being compared with the ASCII codes of ‘A’ and
‘Z’.

The notation && used in the first condition, reads as AND, in
other words if the value of c is greater than or equal to ‘A’
AND it is less than or equal to ‘Z’, then c contains an
uppercase letter.

The notation || used in the second condition reads as OR, in
other words, if the value of c is less than ‘A’ OR if it is
greater than ‘Z’, it cannot be an uppercase letter. We use the
first condition in the 8086 program below.

Introduction to 8086 Assembly Language Programming(alp4) 27

C version:

main() /* char.c: convert letter to lowercase */
{

char c;

printf(“\nEnter an uppercase letter: “);
c = getchar();
if (c >= ‘A‘ && c <= ‘Z‘)
{

c = c + (‘a’ - ‘A’) ; /* convert to
lowercase */

printf(“\nThe lowercase equivalent is: %c “,
c);

}
else

printf(“\nNot an uppercase letter %c “, c);
}

8086 version:

; char3.asm: character conversion: uppercase to
lowercase
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 100h

CR equ 13d
LF equ 10d

.data

msg1 db CR, LF,‘Enter an uppercase letter:
$’
result db CR, LF,‘The lowercase equivalent is: $’
bad_msg db CR, LF,‘Not an uppercase letter: $’

.code ; main program

Introduction to 8086 Assembly Language Programming(alp4) 28

start:
mov ax, @data
mov ds, ax

mov ax, offset msg1
call puts
call getc ; read uppercase letter
mov bl, al ; save character in bl
cmp bl, ‘A‘
jl invalid ; if bl < ‘A‘ goto invalid
cmp bl, ‘Z‘ ; if bl > ‘Z‘ goto invalid
jg invalid

; otherwise its valid
add bl, 32d ; convert to lowercase

mov ax, offset result
call puts ; display result message
mov al, bl
call putc ; display lowercase letter
jmp finish

invalid:
mov ax, offset bad_msg ; not uppercase
call puts ; display bad_msg
mov al, bl
call putc ; display character

entered

finish:
mov ax, 4c00h
int 21h ; return to ms-dos

; subprograms getc, putc and puts should be defined
here

end start

Introduction to 8086 Assembly Language Programming(alp4) 29

This program produces as output, assuming the digit 8 is
entered:

Enter an uppercase letter: 8
Not an uppercase letter: 8

It produces as output, assuming the letter Y is entered:

Enter an uppercase letter: Y
The lowercase equivalent is: y

Introduction to 8086 Assembly Language Programming(alp4) 30

Exercises
3.13 Write a program to read a digit and display an error
message if a non-digit character is entered.

3.14 In the code fragments below where will execution
continue from when <jump-on-condition> is replaced by (a)
je lab1 ; (b) jg lab1; (c) jle lab1; (d) jz lab1
(i) mov ax, 10h

cmp ax, 9h
<jump-on-condition>
; rest of program
...........
...........

lab1:

(ii) mov cx, 0h
cmp cx, 0d
<jump-on-condition>
; rest of program
...........
...........

lab1:

3.15 Write programs to test that a character read from the
keyboard and transfer control to label ok_here, if the
character is:

(i) a valid lowercase letter (‘a’ <= character <= ‘z’)
(ii) either an uppercase or lowercase letter (‘A’ <=

character <= ‘Z’ OR ‘a’ <= character <= ‘z’)
(iii) is not a lowercase letter, i.e. character < ‘a’ or character

> ‘z’.
The programs should display appropriate messages to prompt
for input and indicate whether the character satisfied the
relevant test.

Introduction to 8086 Assembly Language Programming(alp4) 31

3.5.5 Loops
We have already seen how loops could be implemented using
the jmp instruction to jump backwards in a program.
However, we noted that since jmp is an unconditional jump,
it gives rise to infinite loops. The solution is to use jump-on-
condition instructions. For example, a while loop to display
the ‘*’ character 60 times may be implemented as in Example
3.31.

Example 3.31: Display a line of 60 stars.

C version:
count = 1 ;
while (count <= 60)
{

putchar(‘*’) ;
count = count + 1 ;

}

8086 version:

mov cx, 1d ; cx = 1
mov al, ‘*’ ; al = ‘*’

disp_char:
cmp cx, 60d
jnle end_disp ; if cx > 60 goto end_disp

call putc ; display ‘*’
inc cx ; cx = cx + 1

jmp disp_char ; repeat loop
test

end_disp:

Introduction to 8086 Assembly Language Programming(alp4) 32

The instruction jnle (jump if not less than or equals) may also
be written as jg (jump if greater than). We use a similar
technique to that used in the implementation of an if-then
construct in that we test the inverse of the condition used in
the C code fragment(count <= 60). This allows us write
clearer code in assembly language.

Example 3.32: Write a code fragment to display the
characters from ‘a’ to ‘z’ on the screen using the knowledge
that the ASCII codes form a collating sequence. This means
that the code for ‘b’ is one greater than the code for ‘a’ and
the code for ‘c’ is one greater than that for ‘b’ and so on.

C version:
c = ‘a‘ ; /* c = 97 (ASCII for ‘a‘)
while (c <= ‘z‘)
{

putchar(c);
c = c + 1 ;

}

8086 version:

mov al, ‘a’
startloop:

cmp al, ‘z’
jnle endloop ; while al <= ‘z’

call putc ; display character
inc al ; al = al + 1

jmp startloop ; repeat test
endloop:

This program produces as output
abcdefghijklmnopqrstuvwxyz

Introduction to 8086 Assembly Language Programming(alp4) 33

In the last two examples, we specified how many times the
loop action was to be carried out (such a loop is called a
deterministic loop).

We frequently encounter cases when we do not know how
many times the loop will be executed. For example, at each
iteration we may ask the user if the loop action is to be
repeated and the loop continues to execute or is terminated on
the basis of the user’s response.

Example 3.33: Program 3.19 reads an uppercase letter,
converts it to lowercase and displays the lowercase
equivalent. We now modify it, so that the user may repeat this
process as often as desired. The user is asked to enter ‘y’ to
carry out the operation, after each iteration.

C version:
main()
{

char c, reply;

reply = ‘y‘;

while (reply == ‘y‘)
{

printf(“\nEnter an uppercase letter: “);
c = getchar();
c = c + (‘a’ - ‘A’) ; /* convert to lowercase

*/
printf(“\nThe lowercase equivalent is: %c “, c);
printf(“\nEnter y to continue: “);
reply = getchar();

}
}

Introduction to 8086 Assembly Language Programming(alp4) 34

8086 version:
; char4.asm: character conversion: upper to lowercase

.model small

.stack 100h
CR equ 13d
LF equ 10d

.data
reply db ‘y’
msg0 db CR, LF, ‘Enter y to continue: $’
msg1 db CR, LF, ‘Enter an uppercase letter: $’
result db CR, LF, ‘The lowercase equivalent is: $’

.code
; main program
start:

mov ax, @data
mov ds, ax

readloop:
cmp reply, ‘y’ ; while (reply == ‘y‘)
jne finish ; do loop body

mov ax, offset msg1
call puts ; prompt for letter
call getc ; read character
mov bl, al ; save character in bl
add bl, 32d ; convert to lowercase

mov ax, offset result
call puts ; display result message
mov al, bl
call putc ; display lowercase letter

mov ax, offset msg0
call puts ; prompt to continue
call getc ; read reply
mov reply, al ; save character in reply
jmp readloop ; repeat loop test

finish:
mov ax, 4c00h
int 21h ; return to ms-dos

; user defined subprograms should be defined here
end start

Introduction to 8086 Assembly Language Programming(alp4) 35

Executing this program produces as output, assuming the user
enters the characters C, y, X and n:

Enter an uppercase letter: C
The lowercase equivalent is: c
Enter y to continue: y
Enter an uppercase letter: X
The lowercase equivalent is: x
Enter y to continue: n

Exercises
3.16 Modify the program in Example 3.33 to test that the
letter entered is a valid uppercase letter. If it isn’t an
uppercase letter a suitable error message should be displayed
and the program should continue executing for as long as the
user wishes.

3.17 Modify the guessing game program (Program 3.29) to
allow the user three guesses, terminating if any guess is
correct.

3.18 Modify the guessing game program to allow users guess
as many or as few times as they wish, terminating if any guess
is correct.

3.19 Modify the guessing game program to loop until a
correct guess is made.

Introduction to 8086 Assembly Language Programming(alp4) 36

3.5.6 Counting Loops
Counting loops, where we know in advance how many times
to repeat the loop body, occur frequently in programming and
as a result most high-level languages have a special construct
called a for-loop to implement them.

In Program 3.31, to display the ‘*’ character 60 times, we
counted upwards from 1 to 60, testing each time around the
loop to see if we have reached 60. In assembly language
programming, it is common to count downwards, e.g. from 60
to 0.

Because this type of situation occurs frequently in
programming, it can be implemented by using the loop
instruction.

The loop instruction combines testing of cx with zero and
the decrementing of cx in a single instruction, i.e. the loop
instruction decrements cx by 1 and tests if cx equals zero.

It causes a jump if cx does not equal 0. It can only be used in
conjunction with the cx register (known as the count
register), i.e. the cx register is initialised with the number of
times the loop is to be repeated. Program 3.31 can be
rewritten to use the loop instruction as follows:

Example 3.36: Using loop instruction.

mov al, ‘*’ ; al = ‘*’
mov cx, 60d ; cx = 60 ; loop count

disp_char:

Introduction to 8086 Assembly Language Programming(alp4) 37

call putc ; display ‘*’
loop disp_char ; cx = cx - 1, if (cx != 0)

goto disp_char

Here, cx is initialised to 60, the number of iterations required.
The instruction loop disp_char first decrements cx and
then tests if cx is not equal to 0, branching to disp_char
only if cx does not equal 0.

General format for using loop instruction:

mov cx, count ; count = # of times to repeat
loop
start_loop: ; use any label name

 <loop body> ; while cx > 0
; repeat loop body

instructions
loop start_loop

To use the loop instruction, simply store the number of
iterations required in the cx register and construct a loop
body as outlined above. The last instruction of the loop body
is the loop instruction.

Note 1: The loop body will always be executed at least once,
since the loop instruction tests the value of cx after
executing the loop body.

Introduction to 8086 Assembly Language Programming(alp4) 38

Note 2: What happens if cx is initialised to 0? The loop
instruction decrements cx before testing the condition (cx
!= 0).

Thus we continue around the loop, with cx becoming more
negative. We will repeat the loop body 65,536 times.

Why ?

The reason is because we keep subtracting 1 from cx until we
reach 0. Eventually, by making cx more negative, the largest
negative number that cx can contain is reached. Since cx is
16-bit register, we know from Appendix 2, that this number is
-32768d, which is the 16-bit number 1000 0000 0000
0000.

Subtracting 1 from this yields the 16-bit number
 0111 1111 1111 1111 or 32767d.

We can subtract 1 from this number 32767 times before
reaching 0, which terminates the loop instruction. Thus the
total number of iterations is 32768 + 32767 + 1 which
equals 65,535 + 1 (the extra 1 is because cx started at 0 and
was decremented to -1 before the test).

Introduction to 8086 Assembly Language Programming(alp5) 1

Declaring Variables in Assembly Language

As in Java, variables must be declared before they can be used. Unlike
Java, we do not specify a variable type in the declaration in assembly
language. Instead we declare the name and size of the variable, i.e. the
number of bytes the variable will occupy. We may also specify an initial
value.

A directive (i.e. a command to the assembler) is used to define variables.
In 8086 assembly language, the directive db defines a byte sized
variable; dw defines a word sized variable (16 bits) and dd defines a
double word (long word, 32 bits) variable.

A Java variable of type int may be implemented using a size of 16 or
32 bits, i.e. dw or dd is used. A Java variable of type char, which is
used to store a single character, is implemented using the db directive.

Example:

reply db ‘y’
prompt db ‘Enter your favourite colour: ’, 0
colour db 80 dup(?)
i db 20
k db ?
num dw 4000
large dd 50000

reply is defined as a character variable, which is initialised to ‘y’.

prompt is defined as a string, terminated by the Null character.

The definition of the variable colour demonstrates how to declare an
array of characters of size 80, which contains undefined values.

Introduction to 8086 Assembly Language Programming(alp5) 2

The purpose of dup is to tell the assembler to duplicate or repeat the data
definition directive a specific number of times, in this case 80 dup
specifies that 80 bytes of storage are to be set aside since dup is used
with the db directive.

The (?) with the dup means that storage allocated by the directive is
unitialised or undefined.

i and k are byte sized variables, where i is initialised to 20 and k is left
undefined.

num is a 16-bit variable, initialised to 4000 and the variable large is a
32-bit variable, initialised to 15000.

Indirect Addressing

Given that we have defined a string variable message as

message db ‘Hello’,0,

an important feature is that the characters are stored in consecutive
memory locations.

If the ‘H’ is in location 1024, then ‘e’ will be in location 1025, ‘l’
will be in location 1026 and so on. A technique known as indirect
addressing may be used to access the elements of the array.

Indirect addressing allows us store the address of a location in a register
and use this register to access the value stored at that location.

This means that we can store the address of the string in a register and
access the first character of the string via the register. If we increment the
register contents by 1, we can access the next character of the string. By

Introduction to 8086 Assembly Language Programming(alp5) 3

continuing to increment the register, we can access each character of the
string, in turn, processing it as we see fit.

Figure 1 illustrates how indirect addressing operates, using register bx to
contain the address of a string “Hello” in memory. Here, register bx
has the value 1024 which is the address of the first character in the
string.

Another way of phrasing this is to say that bx points to the first
character in the string.

In 8086 assembly language we denote this by enclosing bx in square
brackets: [bx], which reads as the value pointed to by bx , i.e. the
contents of the location whose address is stored in the bx register.

1024

1025

1026

1027

H

e

l

l

o

bx1024

0

1028

1029

Figure 1: Using the bx register for indirect addressing

Introduction to 8086 Assembly Language Programming(alp5) 4

The first character of the string can be accessed as follows:

cmp byte ptr [bx], 0 ; is this end of string?

This instruction compares the character (indicated by byte ptr)
pointed to by bx with 0.

How do we store the address of the string in bx in the first place? The
special operator offset allows us specify the address of a memory
variable. For example, the instruction:

mov bx, offset message

will store the address of the variable message in bx. We can then use
bx to access the variable message.

Example: The following code fragment illustrates the use of indirect
addressing. It is a loop to count the number of characters in a string
terminated by the Null character (ASCII 0). It uses the cx register to
store the number of characters in the string.

message db ‘Hello’, 0
.......
........

mov cx, 0 ; cx stores number of
characters

mov bx, offset message ; store address of message in bx

begin:
cmp byte ptr [bx], 0 ; is this end of string?
je fin ; if yes goto Finished

inc cx ; cx = cx + 1
inc bx ; bx points to next character

jmp begin
; cx now contains the # of
; characters in message

fin:

Introduction to 8086 Assembly Language Programming(alp5) 5

The label begin indicates the beginning of the loop to count the
characters. After executing the mov instruction, register bx contains the
address of the first character in the string. We compare this value with 0
and if the value is not 0 , we count it by incrementing cx. We then
increment bx so that it now points to the next character in the string. We
repeat this process until we reach the 0 character which terminates the
string.

Note: If you omit the 0 character when defining the string, the above
program will fail. Why? The reason is that the loop continues to execute,
until bx points to a memory location containing 0. If 0 has been omitted
from the definition of message, then we do not know when, if ever, the
loop will terminate. This is the same as an array subscript out of bounds
error in a high level language.

The form of indirect addressing described here is called register indirect
addressing because a register is used store the indirect address.

String I/O
In programming languages such as C, strings are terminated by the ‘\0’
character. We adopt the same convention. This method of terminating a
string has an advantage over that used for the puts subprogram defined
earlier, where the ‘$‘ character is used to terminate a string. The use of
the value 0 to terminate a string means that a string may contain the ‘$’
character which can then be displayed, since ‘$’ cannot be displayed by
puts.

We use this indirect addressing in the implementation of two
subprograms for reading and displaying strings: get_str and
put_str

Introduction to 8086 Assembly Language Programming(alp5) 6

Example 3.42: Read colour entered by the user and display a suitable
message, using get_str and put_str.

; colour.asm: Prompt user to enter a colour and display a message
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 256

CR equ 13d
LF equ 10d

; string definitions: note 0 terminator
.data

msg1 db ‘Enter your favourite colour: ‘, 0
msg2 db CR, LF,‘Yuk ! I hate ‘, 0
colour db 80 dup (0)

.code
start:

mov ax, @data
mov ds, ax

mov ax, offset msg1
call put_str ; display prompt

mov ax, offset colour
call get_str ; read colour

mov ax, offset msg2
call put_str ; display msg2

mov ax, offset colour
call put_str ; display colour entered by

user

mov ax, 4c00h
int 21h ; finished, back to dos

Introduction to 8086 Assembly Language Programming(alp5) 7

put_str: ; display string terminated by 0
; whose address is in ax

push ax ; save registers
push bx
push cx
push dx

mov bx, ax ; store address in bx
mov al, byte ptr [bx] ; al = first char in string

put_loop: cmp al, 0 ; al == 0 ?
je put_fin ; while al != 0
call putc ; display character
inc bx ; bx = bx + 1
mov al, byte ptr [bx] ; al = next char in string
jmp put_loop ; repeat loop test

put_fin:
pop dx ; restore registers
pop cx
pop bx
pop ax
ret

Introduction to 8086 Assembly Language Programming(alp5) 8

get_str: ; read string terminated by CR into array
; whose address is in ax

push ax ; save registers
push bx
push cx
push dx

mov bx, ax

call getc ; read first character
mov byte ptr [bx], al ; In C: str[i] = al

get_loop: cmp al, 13 ; al == CR ?
je get_fin ;while al != CR

inc bx ; bx = bx + 1
call getc ; read next character
mov byte ptr [bx], al ; In C: str[i] = al
jmp get_loop ; repeat loop test

get_fin: mov byte ptr [bx], 0 ; terminate string with 0

pop dx ; restore registers
pop cx
pop bx
pop ax
ret

Introduction to 8086 Assembly Language Programming(alp5) 9

putc: ; display character in al
push ax ; save ax
push bx ; save bx
push cx ; save cx
push dx ; save dx

mov dl, al
mov ah, 2h
int 21h

pop dx ; restore dx
pop cx ; restore cx
pop bx ; restore bx
pop ax ; restore ax

ret

getc: ; read character into al
push bx ; save bx
push cx ; save cx
push dx ; save dx

mov ah, 1h
int 21h

pop dx ; restore dx
pop cx ; restore cx
pop bx ; restore bx

ret

end start

This program produces as output:

Enter your favourite colour: yellow
Yuk ! I hate yellow

Introduction to 8086 Assembly Language Programming(alp5) 10

Reading and Displaying Numbers
See Chapter 3 of textbook for implementation details

We use getn and putn to read and display numbers:

getn: reads a number from the keyboard and returns it in the ax
register

putn: displays the number in the ax register

Example: Write a program to read two numbers, add them and display
the result.

; calc.asm: Read and sum two numbers. Display result.
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 256

CR equ 13d
LF equ 10d

.data

prompt1 db ‘Enter first number: ’, 0
prompt2 db CR, LF,‘Enter second number:’,0
result db CR, LF ‘The sum is’, 0

num1 dw ?
num2 dw ?

Introduction to 8086 Assembly Language Programming(alp5) 11

.code
start:

mov ax, @data
mov ds, ax

mov ax, offset prompt1
call put_str ; display prompt1
call getn ; read first number
mov num1, ax

mov ax, offset prompt2
call put_str ; display prompt2
call getn ; read second number
mov num2, ax

mov ax, offset result
call put_str ; display result message

mov ax, num1 ; ax = num1
add ax, num2 ; ax = ax + num2
call putn ; display sum

mov ax, 4c00h
int 21h ; finished, back to dos

<definitions of getn, putn, put_str, get_str, getc, putc go
here>

end start

Running the above program produces:

Enter first number: 8
Enter second number: 6
The sum is 14

Introduction to 8086 Assembly Language Programming(alp5) 12

More about the Stack
A stack is an area of memory which is used for storing data on a
temporary basis. In a typical computer system the memory is logically
partitioned into separate areas. Your program code is stored in one such
area, your variables may be in another such area and another area is used
for the stack. Figure 2 is a crude illustration of how memory might be
allocated to a user program running.

Operating
 System

User Program
 Instructions

User Program
 Data

Free Memory

Stack

Low Memory

High Memory

Figure 2: Memory allocation: User programs share memory with the
Operating System software

The area of memory with addresses near 0 is called low memory, while
high memory refers to the area of memory near the highest address. The
area of memory used for your program code is fixed, i.e. once the code is
loaded into memory it does not grow or shrink.

The stack on the other hand may require varying amounts of memory.
The amount actually required depends on how the program uses the

Introduction to 8086 Assembly Language Programming(alp5) 13

stack. Thus the size of the stack varies during program execution. We
can store information on the stack and retrieve it later.

One of the most common uses of the stack is in the implementation of
the subprogram facility. This usage is transparent to the programmer, i.e.
the programmer does not have to explicitly access the stack. The
instructions to call a subprogram and to return from a subprogram
automatically access the stack. They do this in order to return to the
correct place in your program when the subprogram is finished.

The point in your program where control returns after a subprogram
finishes is called the return address. The return address of a
subprogram is placed on the stack by the call instruction. When the
subprogram finishes, the ret instruction retrieves the return address
from the stack and transfers control to that location. The stack may also
be used to pass information to subprograms and to return information
from subprograms, i.e. as a mechanism for handling high level language
parameters.

Conceptually a stack as its name implies is a stack of data elements.
The size of the elements depends on the processor and for example, may
be 1 byte, 2 bytes or 4 bytes. We will ignore this for the moment. We can
illustrate a stack as in Figure 3:

Introduction to 8086 Assembly Language Programming(alp5) 14

SP
High Memory

Low Memory
?
?
?

?
?
?

 Stack

.

.

.

Figure 3: Simple model of the stack

To use the stack, the processor must keep track of where items are stored
on it. It does this by using the stack pointer (sp) register.

This is one of the processor's special registers. It points to the top of the
stack, i.e. its contains the address of the stack memory element
containing the value last placed on the stack. When we place an element
on the stack, the stack pointer contains the address of that element on the
stack. If we place a number of elements on the stack, the stack pointer
will always point to the last element we placed on the stack. When
retrieving elements from the stack we retrieve them in reverse order.
This will become clearer when we write some stack manipulation
programs.

There are two basic stack operations which are used to manipulate the
stack usually called push and pop. The 8086 push instruction places
(pushes) a value on the stack. The stack pointer is left pointing at the
value pushed on the stack. For example, if ax contains the number 123,
then the following instruction:

Introduction to 8086 Assembly Language Programming(alp5) 15

push ax

will cause the value of ax to be stored on the stack. In this case the
number 123 is stored on the stack and sp points to the location on the
stack where 123 is stored.

The 8086 pop instruction is used to retrieve a value previously placed on
the stack. The stack pointer is left pointing at the next element on the
stack. Thus pop conceptually removes the value from the stack. Having
stored a value on the stack as above, we can retrieve it by:

pop ax

which transfers the data from the top of the stack to ax, (or any register)
in this case the number 123 is transferred. Information is stored on the
stack starting from high memory locations. As we place data on the
stack, the stack pointer points to successively lower memory locations.
We say that the stack grows downwards. If we assume that the top of the
stack is location 1000 (sp contains 1000) then the operation of push
ax is as follows.

Firstly, sp is decremented by the size of the element (2 bytes for the
8086) to be pushed on the stack. Then the value of ax is copied to the
location pointed to by sp, i.e. 998 in this case. If we then assign bx the
value 212 and carry out a push bx operation, sp is again
decremented by two, giving it the value 996 and 212 is stored at this
location on the stack. We now have two values on the stack.

As mentioned earlier, if we now retrieve these values, we encounter the
fundamental feature of any stack mechanism. Values are retrieved in
reverse order. This means that the last item placed on the stack, is the
first item to be retrieved. We call such a process a Last-In-First-Out
process or a LIFO process.

Introduction to 8086 Assembly Language Programming(alp5) 16

So, if we now carry out a pop ax operation, ax gets as its value 212,
i.e. the last value pushed on the stack.

If we now carry out a pop bx operation, bx gets as its value 123, the
second last value pushed on the stack.

Hence, the operation of pop is to copy a value from the top of the stack,
as pointed to by sp and to increment sp by 2 so that it now points to the
previous value on the stack.

We can push the value of any register or memory variable on the stack.
We can retrieve a value from the stack and store it in any register or a
memory variable.

The above example is illustrated in Figure 4 (steps (1) to (4) correspond
to the states of the stack and stack pointer after each instruction).

Note: For the 8086, we can only push 16-bit items onto the stack e.g.
any register.

The following are ILLEGAL: push al
pop bh

Introduction to 8086 Assembly Language Programming(alp5) 17

?

123

?

?

.

.

.

mov ax, 123
push ax

1000

996
998

?

212

?

.

.

.

mov bx, 212
push bx

sp 123

1000

996
998

sp998 sp996

after push ax after push bx

ax

bx
123
212

ax and bx after
mov instructions

(1) (2)

?

?

?

.

.

.

pop ax

?

?

?

.

.

.

pop bx

?

1000

996
998

1000

996
998123

sp1000sp998

after pop bxafter pop ax

ax

bx
212
123

ax and bx after
pop instructions

(3) (4)

sp

sp

sp

Figure 4: LIFO nature of push and pop

Introduction to 8086 Assembly Language Programming(alp5) 18

Example: Using the stack, swap the values of the ax and bx registers,
so that ax now contains what bx contained and bx contains what ax
contained. (This is not the most efficient way to exchange the contents of
two variables). To carry out this operation, we need at least one
temporary variable:

Version 1:

push ax ; Store ax on stack
push bx ; Store bx on stack
pop ax ; Copy last value on stack to ax
pop bx ; Copy first value to bx

The above solution stores both ax and bx on the stack and utilises the
LIFO nature of the stack to retrieve the values in reverse order, thus
swapping them in this example. We really only need to store one of the
values on the stack, so the following is a more efficient solution.

Version 2:

push ax ; Store ax on stack
mov ax, bx ; Copy bx to ax
pop bx ; Copy old ax from stack

When using the stack, the number of items pushed on should equal the
number of items popped off.

This is vital if the stack is being used inside a subprogram. This is
because, when a subprogram is called its return address is pushed on the
stack.

If, inside the subprogram, you push something on the stack and do not
remove it, the return instruction will retrieve the item you left on the
stack instead of the return address. This means that your subprogram
cannot return to where it was called from and it will most likely crash
(unless you were very clever about what you left on the stack!).

Introduction to 8086 Assembly Language Programming(alp5) 19

Format of Assembly Language Instructions
The format of assembly language instructions is relatively standard. The
general format of an instruction is (where square brackets [] indicate the
optional fields) as follows:

[Label] Operation [Operands] [; Comment]

The instruction may be treated as being composed of four fields. All four
fields need not be present in every instruction, as we have seen from the
examples already presented. Unless there is only a comment field, the
operation field is always necessary. The label and the operand fields
may or may not be required depending on the operation field.

Example: Examples of instructions with varying numbers of fields.

Note
L1: cmp bx, cx ; Compare bx with cx all fields present

add ax, 25 operation and 2 operands

inc bx operation and 1 operand

ret operation field only

; Comment: whatever you wish !! comment field only

Introduction to 8086 Assembly Language Programming(alp5) 20

Bit Manipulation
One of the features of assembly language programming is that you
can access the individual bits of a byte (word or long word).

You can set bits (give them a value of 1), clear them (give them a
value of 0), complement them (change 0 to 1 or 1 to 0), and test if
they have a particular value.

These operations are essential when writing subprograms to control
devices such as printers, plotters and disk drives. Subprograms that
control devices are often called device drivers. In such subprograms,
it is often necessary to set particular bits in a register associated with
the device, in order to operate the device. The instructions to operate
on bits are called logical instructions.

Under normal circumstances programmers rarely need concern
themselves with bit operations. In fact most high-level languages do
not provide bit manipulation operations. (The C language is a notable
exception). Another reason for manipulating bits is to make programs
more efficient. By this we usually mean one of two things: the
program is smaller in size and so requires less RAM or the program
runs faster.

The Logical Instructions: and, or, xor, not
As stated above, the logical instructions allow us operate on the bits
of an operand. The operand may be a byte (8 bits), a word (16 bits) a
long word (32 bits). We will concentrate on byte sized operands, but
the instructions operate on word operands in exactly the same
fashion.

Introduction to 8086 Assembly Language Programming(alp5) 21

Clearing Bits: and instruction
A bit and operation compares two bits and sets the result to 0 if
either of the bits is 0.
e.g.

1 and 0 returns 0
0 and 1 returns 0
0 and 0 returns 0
1 and 1 returns 1

The and instruction carries out the and operation on all of the bits of
the source operand with all of the bits of the destination operand,
storing the result in the destination operand (like the arithmetic
instructions such as add and sub).

The operation 0 and x always results in 0 regardless of the value of
x (1 or 0). This means that we can use the and instruction to clear a
specified bit or collection of bits in an operand.

If we wish to clear, say bit 5, of an 8-bit operand, we and the
operand with the value 1101 1111, i.e. a value with bit 5 set to 0
and all other values set to 1.

This results in bit 5 of the 8-bit operand being cleared, with the other
bits remaining unchanged, since 1 and x always yields x.

(Remember, when referring to a bit number, we count from bit 0
upwards.)

Example 4.1: To clear bit 5 of a byte we and the byte with 1101
1111

mov al, 62h ; al = 0110 0010
and al, 0dfh ; and it with 1101 1111

; al is 42h 0100 0010

[Note: You can use binary numbers directly in 8086 assembly
language, e.g.

Introduction to 8086 Assembly Language Programming(alp5) 22

mov al, 01100010b
and al, 11011111b

but it is easier to write them using their hexadecimal equivalents.]

The value in the source operand, 0dfh, in this example, is called a
bit mask. It specifies the bits in the destination operand that are to be
changed. Using the and instruction, any bit in the bit mask with
value 0 will cause the corresponding bit in the destination operand to
be cleared.

In the ASCII codes of the lowercase letters, bit 5 is always 1. The
corresponding ASCII codes of the uppercase letters are identical
except that bit 5 is always 0. Thus to convert a lowercase letter to
uppercase we simply need to clear bit 5 (i.e. set bit 5 to 0). This can
be done using the and instruction and an appropriate bit mask, i.e.
0dfh, as shown in the above example. The letter ‘b’ has ASCII
code 62h. We could rewrite Example 4.1 above as:

Example B.1: Converting a lowercase letter to its uppercase
equivalent:

mov al, ‘b’ ; al = ‘b’(= 98d or 62h) 0110 0010
and al, 0dfh ; mask = 1101 1111

; al now = ‘B’(= 66d or 42h) 0100 0010

The bit mask 1101 1111 when used with and will always set bit 5
to 0 leaving the remaining bits unchanged as illustrated below:

xxxx xxxx ; destination bits
and 1101 1111 ; and with mask bits

xx0x xxxx ; result is that bit 5 is
cleared

If the destination operand contains a lowercase letter, the result will
be the corresponding uppercase equivalent. In effect, we have

Introduction to 8086 Assembly Language Programming(alp5) 23

subtracted 32 from the ASCII code of the lowercase letter which was
the method we used in Chapter 3 for converting lowercase letters to
their uppercase equivalents.

Setting Bits: or instruction
A bit or operation compares two bits and sets the result to 1 if either
bit is set to 1.
e.g.

1 or 0 returns 1
0 or 1 returns 1
1 or 1 returns 1
0 or 0 returns 0

The or instruction carries out an or operation with all of the bits of
the source and destination operands and stores the result in the
destination operand.

The or instruction can be used to set bits to 1 regardless of their
current setting since x or 1 returns 1 regardless of the value of x (0
or 1).

The bits set using the or instruction are said to be masked in.

Example: Take the conversion of an uppercase letter to lowercase,
the opposite of Example B.1 discussed above. Here, we need to set
bit 5 of the uppercase letter’s ASCII code to 1 so that it becomes
lowercase and leave all other bits unchanged. The required mask is
0010 0000 (20h). If we store ‘A’ in al then it can be converted
to ‘a’ as follows:

mov al, ‘A‘ ; al = ‘A‘ = 0100 0001
or al, 20h ; or with 0010 0000

; gives al = ‘a‘ 0110 0001

In effect, we have added 32 to the uppercase ASCII code thus
obtaining the lowercase ASCII code.

Introduction to 8086 Assembly Language Programming(alp5) 24

Before changing the case of a letter, it is important to verify that you
have a letter in the variable you are working with.

Exercises
4.1 Specify the instructions and masks would you use to

a) set bits 2, 3 and 4 of the ax register
b) clear bits 4 and 7 of the bx register

4.2 How would al be affected by the following instructions:
(a) and al, 00fh
(b) and al, 0f0h
(c) or al, 00fh
(d) or al, 0f0h

4.3 Write subprograms todigit and tocharacter, which
convert a digit to its equivalent ASCII character code and vice versa.

4.1.3 The xor instruction
The xor operation compares two bits and sets the result to 1 if the
bits are different.
e.g.

1 xor 0 returns 1
0 xor 1 returns 1
1 xor 1 returns 0
0 xor 0 returns 0

The xor instruction carries out the xor operation with its operands,
storing the result in the destination operand.

The xor instruction can be used to toggle the value of specific bits
(reverse them from their current settings). The bit mask to toggle
particular bits should have 1’s for any bit position you wish to toggle
and 0’s for bits which are to remain unchanged.

Example 4.7: Toggle bits 0, 1 and 6 of the value in al (here 67h):

Introduction to 8086 Assembly Language Programming(alp5) 25

mov al, 67h ; al = 0011 0111
xor al, 08h ; xor it with 0100 0011

; al is 34h 0111 0100

A common use of xor is to clear a register, i.e. set all bits to 0, for
example, we can clear register cx as follows

xor cx, cx

This is because when the identical operands are xored, each bit
cancels itself, producing 0:

0 xor 0 produces 0
1 xor 1 produces 0

Thus abcdefgh xor abcdefgh produces 00000000 where
abcdefgh represents some bit pattern. The more obvious way of
clearing a register is to use a mov instruction as in:

mov cx, 0

but this is slower to execute and occupies more memory than the xor
instruction. This is because bit manipulation instructions, such as
xor, can be implemented very efficiently in hardware. The sub
instruction may also be used to clear a register:

sub cx, cx

It is also smaller and faster than the mov version, but not as fast as
the xor version. My own preference is to use the clearer version, i.e.
the mov instruction. However, in practice, assembly language
programs are used where efficiency is important and so clearing a
register with xor is often used.

Introduction to 8086 Assembly Language Programming(alp5) 26

4.1.4 The not instruction
The not operation complements or inverts a bit, i.e.

not 1 returns 0
not 0 returns 1

The not instruction inverts all of the bits of its operand.

Example 4.8: Complementing the al register:

mov al, 33h ; al = 00110011
not al ; al = 11001100

Table 1 summarises the results of the logical operations. Such a table
is called a truth table.

 A
and
 B

 A
 or
 B

 A
xor
 B

not
 AA B

1 1 0 1 1 0

1 0 0 0 1 1

10 1 0 1 1

0 0 1 0 0 0

Table 4.1: Truth table for logical operators

Introduction to 8086 Assembly Language Programming(alp5) 27

Efficiency
As noted earlier, the xor instruction is often used to clear an operand
because of its efficiency. For similar reasons of efficiency, the
or/and instructions may be used to compare an operand to 0.

Example 4.9: Comparing an operand to 0 using logical instructions:

or cx, cx ; compares cx with 0
je label
and ax, ax ; compares ax with 0
jg label2

Doing or/and operations on identical operands, does not change the
destination operand (x or x returns x; x and x returns x), but they
do set flags in the status register. The or/and instructions above
have the same effect as the cmp instructions used in Example 4.10,
but they are faster and smaller instructions (each occupies 2 bytes)
than the cmp instruction (which occupies 3 bytes).

Shifting and Rotating Bits
We sometimes wish to change the positions of all the bits in a byte,
word or long word. The 8086 provides a complete set of instructions
for shifting and rotating bits. Bits can be moved right (towards the 0
bit) or left towards the most significant bit. Values shifted off the end
of an operand are lost (one may go into the carry flag).

Shift instructions move bits a specified number of places to the right
or left.

Rotate instructions move bits a specified number of places to the
right or left. For each bit rotated, the last bit in the direction of the
rotate is moved into the first bit position at the other end of the
operand.

Introduction to 8086 Assembly Language Programming(alp5) 28

	1
	2
	3
	4

